2019-2020学年苏教版选修2-1 直线与椭圆 教案
2019-2020学年苏教版选修2-1     直线与椭圆   教案第1页

第2课时 直线与椭圆

考点一 直线与椭圆的位置关系

【例1】 已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:

(1)有两个不重合的公共点;

(2)有且只有一个公共点;

(3)没有公共点.

解 将直线l的方程与椭圆C的方程联立,

得方程组

将①代入②,整理得9x2+8mx+2m2-4=0.③

方程③根的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.

(1)当Δ>0,即-3

(2)当Δ=0,即m=±3时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.

(3)当Δ<0,即m<-3或m>3时,方程③没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.

规律方法 研究直线与椭圆位置关系的方法

(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.

(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.

【训练1】 直线y=kx-k+1与椭圆+=1的位置关系为(  )

A.相交 B.相切 C.相离 D.不确定

解析 直线y=kx-k+1=k(x-1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.