2019-2020学年人教A版选修2-2 反证法 学案
2019-2020学年人教A版选修2-2    反证法   学案第2页

面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.

题型一 用反证法证明结论否定的问题

例1 如图所示,AB,CD为圆的两条相交弦,且不全为直径,求证:AB,CD不能互相平分.

证明 连接AC,CB,BD,DA,假设AB,CD互相平分,则四边形ACBD为平行四边形,∴∠ACB=∠ADB,∠CAD=∠CBD.

∵四边形ACBD为圆的内接四边形,

∴∠ACB+∠ADB=180°,∠CAD+∠CBD=180°,

∴∠ACB=90°,∠CAD=90°,

∴对角线AB,CD均为圆的直径,与已知条件矛盾,

∴AB,CD不能互相平分.

反思与感悟 对于结论否定型命题,正面证明需要考虑的情况很多,过程烦琐且容易遗漏,故可以考虑采用反证法.一般当题目中含有"不可能""都不""没有"等否定性词语时,宜采用反证法证明.

跟踪训练1 已知正整数a,b,c满足a2+b2=c2.求证a,b,c不可能都是奇数.

证明 假设a,b,c都是奇数,则a2,b2,c2都是奇数.

左边=奇数+奇数=偶数,右边=奇数,得偶数=奇数,矛盾.

∴假设不成立,∴a,b,c不可能都是奇数.

题型二 用反证法证明唯一性问题