2019-2020学年北师大版选修1-1 1.3.3全称命题与特称命题的否定 学案
2019-2020学年北师大版选修1-1 1.3.3全称命题与特称命题的否定 学案第2页

 知识链接:

1.全称命题、存在性命题的否定

  一般地,全称命题P: xM,有P(x)成立;其否定命题┓P为:x∈M,使P(x)不成立。存在性命题P:xM,使P(x)成立;其否定命题┓P为: xM,有P(x)不成立。

用符号语言表示:

  P:M, p(x)否定为 P:

  P:M, p(x)否定为 P:

  

2.关键量词的否定

词语 是 一定是 都是 大于 小于 且 词语的否定 不是 一定不是 不都是 小于或等于 大于或等于 或 词语 必有一个 至少有n个 至多有一个 所有x成立 所有x不成立 词语的否定 一个也没有 至多有n-1个 至少有两个 存在一个x不成立 存在有一个成立 3. 命题的否定与否命题是完全不同的概念。其理由:

1.任何命题均有否定,无论是真命题还是假命题;而否命题仅针对命题"若P则q"提出来的。

2.命题的否定(非)是原命题的矛盾命题,两者的真假性必然是一真一假,一假一真;而否命题与原命题可能是同真同假,也可能是一真一假。

例2 写出下列命题的否定。

(1) 所有自然数的平方是正数。

(2) 任何实数x都是方程5x-12=0的根。

(3) 对任意实数x,存在实数y,使x+y>0.

(4) 有些质数是奇数。

例3 写出下列命题的否定。

(1) 若x2>4 则x>2.。

(2) 若m≥0,则x2+x-m=0有实数根。

(3) 可以被5整除的整数,末位是0。

(4) 被8整除的数能被4整除。

(5) 若一个四边形是正方形,则它的四条边相等。

3. 原命题"若P则q" 的形式,它的非命题为 "若┓p,则┓q",既否定条件又否定结论。

典型例题:

例1 写出下列全称命题的否定:

(1)p:所有人都晨练;

(2)p:xR,x2+x+1>0;

(3)p:平行四边形的对边相等;

(4)p: x∈R,x2-x+1=0;

例4 写出下列命题的非命题与否命题,并判断其真假性。 

(1)p:若x>y,则5x>5y;

(2)p:若x2+x﹤2,则x2-x﹤2;

(3)p:正方形的四条边相等;

(4)p:已知a,b为实数,若x2+ax+b≤0有非空实解集,则a2-4b≥0。

目标检测:

1、命题,是     (填"全称命题"或"特称命题"),它是     命题(填"真"或"假"),它的否定命题    ,它是    命题(填"真"或"假").

2、写出命题的否定

(1)p: x∈R,x2+2x+2≤0;

(2)p:有的三角形是等边三角形;

(3)p:有些函数没有反函数;

(4)p:存在一个四边形,它的对角线互相垂直且平分;