解 如图(1),在矩形ABCD中,cos2α+cos2β=2+2===1.
于是类比到长方体中,猜想若其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1.
证明如下:如图(2),cos2α+cos2β+cos2γ=2+2+2===1.
反思与感悟 类比推理是一种主观的不充分的推理,因此,要确认其猜想的正确性,还必须经过严格的逻辑论证.一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得到的命题就越可靠.
类比的关键是能把两个系统之间的某种一致性或相似性确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚.
跟踪训练2 "若直角三角形两直角边的长分别为a,b,将其补成一个矩形,则根据矩形的对角线长可求得该直角三角形外接圆的半径r=".对于"若三棱锥三条侧棱两两垂直,侧棱长分别为a,b,c",类比上述处理方法,可得该三棱锥的外接球的半径R=__________.
答案
解析 由求直角三角形外接圆的半径的方法,通过类比得出求三条侧棱两两垂直的三棱锥外接球的半径的方法为:首先将该三棱锥补全为长方体,而长方体的体对角线长就是三棱锥的外接球的直径,从而得出该三棱锥的外接球的半径R=.
合情推理的应用
归纳推理、类比推理都是合情推理,归纳推理是由部分到整体、由个别到一般的推理;而类比推理则是通过某两类对象在对比中启发猜想结论.这些结论未必正确,要进一步验证(或