由系统动量守恒得:mv=mu+(MA+MB)vA
可求得:u=2.75 m/s.
借题发挥 处理多物体、多过程动量守恒应注意的问题
1.注意正方向的选取.
2.研究对象的选取,是取哪几个物体为系统.
3.研究过程的选取,应明确哪个过程中动量守恒.
针对训练
两辆质量相同的小车,置于光滑的水平面上,有一人静止站在A车上,两车静止,如图3所示.当这个人从A车跳到B车上,接着又从B车跳回A车并与A车保持相对静止,则A车的速率( )
图3
A.等于零 B.小于B车的速率
C.大于B车的速率 D.等于B车的速率
答案 B
解析 选A车、B车和人作为系统,两车均置于光滑的水平面上,在水平方向上无论人如何跳来跳去,系统均不受外力作用,故满足动量守恒定律.设人的质量为m,A车和B车的质量均为M,最终两车速度分别为vA和vB,由动量守恒定律得0=(M+m)vA-MvB,则=,即vA 四、动量守恒定律应用中的临界问题分析 在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题.分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这个条件就是临界条件.临界条件往往表现为某个(或某些)物理量的特定取值.在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键. 【例3】 如图4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量为M=30 kg,乙和他的冰车总质量也是30 kg.游戏时,甲推着一个质量为m=15 kg的箱子和他一起以v0=2 m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面摩擦. 图4