2019-2020学年北师大版选修1-1 导数在函数中的应用 教案
2019-2020学年北师大版选修1-1    导数在函数中的应用  教案第2页

③ 检验在方程=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y=在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y=在这个根处取得 .

3.函数的最大值与最小值:

⑴ 设y=是定义在区间[a ,b ]上的函数,y=在(a ,b )内有导数,则函数y=在[a ,b ]上 有最大值与最小值;但在开区间内 有最大值与最小值.

(2) 求最值可分两步进行:

① 求y=在(a ,b )内的 值;

② 将y=的各 值与、比较,其中最大的一个为最大值,最小的一个为最小值.

(3) 若函数y=在[a ,b ]上单调递增,则为函数的 ,为函数的 ;若函数y=在[a ,b ]上单调递减,则为函数的 ,为函数的 .

[典型例析]

例1已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值.

(1)求a,b,c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

例2已知f(x)=ex-ax-1.

(1)求f(x)的单调增区间;

(2)若f(x)在定义域R内单调递增,求a的取值范围;

(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.