证明不等式时,通过把所证不等式的一边适当地放大或缩小,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得出原不等式成立,这种方法称为放缩法。
5.柯西不等式
设a,b,c,d均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2,等号当且仅当ad=bc时成立。
1.a2≥0(a∈R)。
2.(a-b)2≥0(a,b∈R),其变形有a2+b2≥2ab,2≥ab,a2+b2≥(a+b)2。
3.若a,b为正实数,则≥,特别地,+≥2。
4.a2+b2+c2≥ab+bc+ca。
一、走进教材
1.(选修4-5P23T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________。
解析 2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b)。因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b。