2019-2020学年人教A版选修1-1 2.2.1双曲线的及其标准方程 教案
2019-2020学年人教A版选修1-1   2.2.1双曲线的及其标准方程  教案第3页

1.例1:已经双曲线两个焦点分别为、,双曲线上一点P到、距离差的绝对值等于6,求双曲线的标准方程。

分析:本题为根据双曲线的定义求标准方程

解:设双曲线的标准方程为:(),

因为,故,

所以,

因此,双曲线的标准方程为:

  由学生板演

练习:教科书练习

2.例2一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2 s.

  (1)爆炸点应在什么样的曲线上?

  (2)已知A、B两地相距800 m,并且此时声速为340 m/s,求曲线的方程.

  解(1)由声速及A、B两处听到爆炸声的时间差,可知A、B两处与爆炸点的距离的差,因此爆炸点应位于以A、B为焦点的双曲线上.

  因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上.

  (2)如图8-14,建立直角坐标系xOy,使A、B两点在x轴上,并且点O与线段AB的中点重合.

  设爆炸点P的坐标为(x,y),则

  即2a=680,a=340.

  又∴2c=800,c=400, b2=c2-a2=44400.

  ∵∴x>0.

  所求双曲线的方程为:

   (x>0).

思考1:该例表明,利用两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程,但不能确定爆炸点的准确位置.而现实生活中为了安全,我们最关心的则是爆炸点的准确位置,那么我们如何解决这个问题呢?

  如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用.

思考2:如果A、B两点同时听到爆炸声,说明爆炸点到A、B的距离相等,那么爆炸点应在怎样的曲线上?

  AB的中垂线。

3.补充例题:已知动圆P与定圆C1:(x+5)2+y2=49,C2:(x-5)2+y2=1 都相切,求动圆圆心的轨迹的方程

分析:外切有|PC1|=7+r, |PC2|=1+r,

   ∴|PC1|-|PC2|=6,

内切有|PC1|=r-7, |PC2|=r -1,∴|PC2|-|PC1|=6

故点P的轨迹是双曲线x2/9-y2/16=1 双曲线标准方程的简单应用 1、 提问:我们已经学习了双曲线,双曲线是怎样的点的轨迹?

2、 双曲线的标准方程是怎样的?

3、 双曲线标准方程中a、b、c之间的关系是什么?你能通过它们求出双曲线的标准方程吗? 教科书习题2.2 1、2、