2018-2019学年人教A版 选修2-2 1.3.1 函数的单调性与导数(二) 学案
2018-2019学年人教A版  选修2-2 1.3.1 函数的单调性与导数(二)   学案第3页

只需k(1)∈(1,+∞),即k(1)>1,则0

∴k的取值范围是(0,1).

反思与感悟 (1)利用导数法解决取值范围问题的两个基本思路

①将问题转化为不等式在某区间上的恒成立问题,即f′(x)≥0(或f′(x)≤0)恒成立,利用分离参数或函数性质求解参数范围,然后检验参数取"="时是否满足题意;

②先令f′(x)>0(或f′(x)<0),求出参数的取值范围后,再验证参数取"="时f(x)是否满足题意.

(2)恒成立问题的重要思路

①m≥f(x)恒成立⇒m≥f(x)max;

②m≤f(x)恒成立⇒m≤f(x)min.

跟踪训练1 若函数f(x)=3(1)x3-2(1)ax2+(a-1)x+1在区间(1,4)上单调递减,在(6,+∞)上单调递增,求实数a的取值范围.

考点 利用导数求函数的单调区间

题点 已知函数的单调性求参数(或其范围)

解 方法一 (直接法)

f′(x)=x2-ax+a-1,

令f′(x)=0,得x=1或x=a-1.

当a-1≤1,即a≤2时,函数f(x)在(1,+∞)上单调递增,不合题意.

当a-1>1,即a>2时,函数f(x)在(-∞,1)和(a-1,+∞)上单调递增,在(1,a-1)上单调递减,

由题意知(1,4)⊂(1,a-1)且(6,+∞)⊂(a-1,+∞),

所以4≤a-1≤6,即5≤a≤7.

故实数a的取值范围为[5,7].

方法二 (数形结合法)

如图所示,