【例1】 (多选)质量为M和m0的滑块用轻弹簧连接,以恒定速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图1所示,碰撞时间极短,在此过程中,下列情况可能发生的是( )
图1
A.M、m0、m速度均发生变化,碰后分别为v1、v2、v3,且满足(M+m0)v=Mv1+mv2+m0v3
B.m0的速度不变,M和m的速度变为v1和v2,且满足Mv=Mv1+mv2
C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′
D.M、m0、m速度均发生变化,M和m0的速度都变为v1,m的速度变为v2,且满足(M+m0)v=(M+m0)v1+mv2
答案 BC
解析 M和m碰撞时间极短,在极短的时间内弹簧形变极小,可忽略不计,因而m0在水平方向上没有受到外力作用,动量不变(速度不变),可以认为碰撞过程中m0没有参与,只涉及M和m,由于水平面光滑,弹簧形变极小,所以M和m组成的系统水平方向动量守恒,两者碰撞后可能具有共同速度,也可能分开,所以只有B、C正确.
二、单一方向动量守恒问题
1.动量守恒定律的适用条件是普遍的,当系统所受的合外力不为零时,系统的总动量不守恒,但是不少情况下,合外力在某个方向上的分量却为零,那么在该方向上系统的动量分量就是守恒的.
2.分析该方向上对应过程的初、末状态,确定初、末状态的动量.
3.选取恰当的动量守恒的表达式列方程.
三、多物体、多过程动量守恒定律的应用
对于由多个物体组成的系统,由于物体较多,作用过程较为复杂,这时往往要根据作用过程中的不同阶段,将系统内的物体按作用的关系分成几个小系统,对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒定律方程求解.