2018-2019学年人教A版必修1 1.3.2奇偶性 教案(5)
2018-2019学年人教A版必修1 1.3.2奇偶性 教案(5)第3页

②学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数.

③利用函数的解析式来描述.

④偶函数的性质:图象关于y轴对称.

⑤函数f(x)=x2,x∈[-1,2]的图象关于y轴不对称;对定义域[-1,2]内x=2,f(-2)不存在,

即其函数的定义域中任意一个x的相反数-x不一定也在定义域内,即f(-x)=f(x)不恒成立.

⑥偶函数的定义域中任意一个x的相反数-x一定也在定义域内,此时称函数的定义域关于原点对称.

⑦先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质.

给出偶函数和奇函数的定义后,要指明:(1)函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;(2)由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称);(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;(4)可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;(5)函数的奇偶性是函数在定义域上的性质是"整体"性质,而函数的单调性是函数在定义域的子集上的性质是"局部"性质.

讨论结果:

①这两个函数之间的图象都关于y轴对称.

x -3 -2 -1 0 1 2 3 f(x)=x2 9 4 1 0 1 4 9 表1

x -3 -2 -1 0 1 2 3 f(x)=|x| 3 2 1 0 1 2 3 表2

这两个函数的解析式都满足:

f(-3)=f(3);

f(-2)=f(2);