2018-2019学年人教A版必修五 等比数列 教案
2018-2019学年人教A版必修五       等比数列  教案第1页

2.4等比数列

●教学目标

知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导;

过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。

情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。

●教学重点

等比数列的定义及通项公式

●教学难点

灵活应用定义式及通项公式解决相关问题

●教学过程

Ⅰ.课题导入

复习:等差数列的定义: -=d ,(n≥2,n∈N)

等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。

课本P41页的4个例子:

①1,2,4,8,16,...

②1,,,,,...

③1,20,,,,...

④,,,,,......

观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征?

共同特点:从第二项起,第一项与前一项的比都等于同一个常数。

Ⅱ.讲授新课

1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q