习题课 圆的方程的应用
学习目标 1.体会数形结合思想在求解与圆有关的最值问题中的应用.2.掌握直线与圆的方程的实际应用.3.了解圆系的方程.
知识点一 与圆有关的最值问题
1.与圆上的点(x,y)有关的最值
常见的有以下几种类型:
(1)形如u=形式的最值问题,可转化为过点(x,y)和(a,b)的动直线斜率的最值问题.
(2)形如l=ax+by形式的最值问题,可转化为动直线y=-x+截距的最值问题.
(3)形如m=(x-a)2+(y-b)2形式的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题.
2.与圆的几何性质有关的最值
(1)记O为圆心,圆外一点A到圆上距离的最小值为AO-r,最大值为AO+r.
(2)过圆内一点的最长的弦为圆的直径,最短的弦为以该点为中点的弦.
(3)记圆心到直线的距离为d,若直线与圆相离,则圆上的点到直线的最大距离为d+r,最小距离为d-r.
(4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆.
知识点二 直线与圆的方程的实际应用
直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程
知识点三 圆系方程
两圆相交(相切)有两个(一个)交点,经过这些交点可作无穷多个圆,这无穷多个圆具有某些共同的性质,我们把这些圆的集合称为圆系.常见的圆系方程有以下几种:
(1)以(a,b)为圆心的同心圆系方程为(x-a)2+(y-b)2=k2 (k≠0).
(2)与圆x2+y2+Dx+Ey+F=0同圆心的圆系方程为x2+y2+Dx+Ey+K=0.