;当时,由于,所以。
要点三:向量数量积的性质
设与为两个非零向量,是与同向的单位向量.
1.
2.
3.当与同向时,;当与反向时,. 特别的或
4.
5.
要点四:向量数量积的运算律
1.交换律:
2.数乘结合律:
3.分配律:
要点诠释:
1.已知实数a、b、c(b≠0),则ab=bca=c.但是;
2.在实数中,有(ab)c=a(bc),但是
显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线.
要点五:向量数量积的坐标表示
1.已知两个非零向量,,
2.设,则或
3.如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式).
要点六:向量在几何中的应用
(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件
(2)证明垂直问题,常用垂直的充要条件