一、导入
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
3、(1)出示例1中的第1组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
(2)出示例1中的第2组图
要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调"转化"的方法。)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究"平行四边形面积的计算"。(板书课题)
二、新授
1、学习例2
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
(4)教室用课件进行演示并小结。
师:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
2、学习例3
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第115页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
转化后的长方形 平行四边形 长 宽 面积 底 高 面积 (2)学生操作,反馈交流。
(3)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
④根据长方形的面积公式、怎样求平行四边形的面积?
(4)学生总结,形成下面的板书:
长方形的面积 = 长 X 宽
平行四边形的面积 = 底 X 高
(5)用字母表示面公式:S = a h(板书)
三、练习
1、指导完成试一试:明确应用公式求平
行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:强调底和高的对应关系。
通过今天的学习有哪些收获?
3、做练习二的第1题和第5题。
四、全课总结
板
书
设
计 平行四边形面积的计算
转化
已学过的图形 新图形
割补、剪拼
因为 长方形的面积 = 长 × 宽
所以 平行四边形的面积 = 底 × 高 教
学
反
思