§1.2.1几个常用函数的导数
教学目标:
1.使学生应用由定义求导数的三个步骤推导四种常见函数、、、的导数公式;
2.掌握并能运用这四个公式正确求函数的导数.
教学重点:四种常见函数、、、的导数公式及应用
教学难点: 四种常见函数、、、的导数公式
教学过程:
一.创设情景
我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数,如何求它的导数呢?
由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.
二.新课讲授
1.函数的导数
根据导数定义,因为
所以
函数 导数 表示函数图像(图3.2-1)上每一点处的切线的斜率都为0.若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
2.函数的导数
因为
所以
函数 导数