思考?若F在上呢?(学生思考、讨论、画图)
此时退化为过F点且与直线 垂直的一条直线.
3.抛物线的标准方程
从抛物线的定义中我们知道,抛物线上的点满足到焦点F的距离与到准线的距离相等。那么动点的轨迹方程是什么,即抛物线的方程是什么呢?
要求抛物线的方程,必须先建立直角坐标系.
问题 设焦点F到准线的距离为,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.
(引导学生分组讨论,回答,并不断补充常见的几种建系方法,叫学生应用投影仪展示计算结果)
1 2 3 注意:1.标准方程必须出来,此表格在黑板上板书。
2.若出现比较复杂建系方案,可以以引入的字母参数较多为由,先排除计算
3.强调P的意义。
4.教师说明曲线方程与方程的曲线:从上述过程可以看到,抛物线上任意一点的坐标都满足方程,以方程的解为坐标的点到抛物线的焦点的距离与到准线的距离相等,即方程的解为坐标的点都在抛物线上。所以这些方程都是抛物线的方程.
(选择标准方程)
师:观察4(3)个建系方案及其对应的方程,你认为哪种建系方案使方程更简单?
(学生选择,说明1.对称轴 2.焦点 3.方程无常数项,顶点在原点)
推导过程:取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴建立直角坐标系,如右图所示,则有F(,0),l的方程为x=-.
设动点M(x,y),由抛物线定义得:
化简得y2=2px(p>0)
师:我们把方程叫做抛物线的标准方程,它表示