则物体在时间间隔内经过的路程可用速度函数表示为。
另一方面,这段路程还可以通过位置函数S(t)在上的增量来表达,即
=
而。
对于一般函数,设,是否也有
若上式成立,我们就找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。
注:1:定理 如果函数是上的连续函数的任意一个原函数,则
证明:因为=与都是的原函数,故
-=C()
其中C为某一常数。
令得-=C,且==0
即有C=,故=+
=-=
令,有
类型一:定积分的概念:
例1计算下列定积分
1. 2.; 3.。
解:1.
2.因为,所以。
3. 因为,所以