学生操作演示,天平平衡。
(设计意图: 通过操作演示使学生进一步理解等式的性质,初步体会到可以用等式的性质解方程)
(二)指导解方程的书写格式
师:通过操作我们发现他的想法是对的!以后我们就用等式的性质来求方程中未知数的值。这个演算过程如何书写呢?
让学生先同桌交流发表自己的看法,然后师边示范边强调:首先在方程的第二行起写一个"解"字,利用等式的性质两边同时减去一个3,为了美观注意每步等号要对齐。
师板书如下:
X+3=9
解:x+3-3=9-3
x=6
重点问:左右两边同时减去的为什么是3,而不是其它数呢?
学生纷纷说出想法。
师结:方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
师:我们要想知道算的对不对,不能每次都用天平来验证吧,尤其是遇到较大的数。(学生点头认同)
师:那怎麽办呢?
生:可以验算!
师:怎么验算?
学生可以交流,根据学生的回答老师板书验算方法:
验算:方程的左边=X+3
=6+3
=9
=方程的右边
所以,X=6是方程的解。
(三)揭示方程的解和解方程两个概念。
师:像上面X=6这样使方程左右两边相等的未知数的值,叫方程的解。而求方程的解的过程叫做解方程。
同时课件出示两个概念,让学生说说两个概念有什么不同?
师明确:方程的解是一个具体的数值,而解方程是一个过程,解方程的目的就是求方程的解。
(设计意图:这里根据学生已有的知识衔接,将教材稍作处理先教学方程的解法,再揭示方程的解和解方程两个概念,使整个教学流程顺畅自然,水到渠成,更易于学生对知识的理解和掌握。)
(四)独立尝试解方程(例2)
师:同学们已掌握了解方程的方法,看这个方程你会解吗?
课件出示信息图,让学生看图列出方程3X=18,
师抛出问题:这个方程如何解呢?要根据方程的哪个性质来解?
师:谁愿意来板演?(其他学生练习本上做)
教师针对学生做题情况,重点强调:根据"方程的两边同时除以一个不等于0的数,左右两边仍然相等"来解方程。
(设计意图:本环节老师抛出问题后就放手给学生做,给学生提供独立探索的机会,体验