跟踪训练1 已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴距离分别为10和6,求抛物线的方程.
考点 抛物线的标准方程
题点 求抛物线方程
解 设抛物线的方程为y2=2ax(a≠0),点P(x0,y0).
因为点P到对称轴距离为6,
所以y0=±6.
因为点P到准线距离为10,
所以=10.①
因为点P在抛物线上,所以36=2ax0,②
由①②,得或或或
所以所求抛物线的方程为y2=±4x或y2=±36x.
类型二 抛物线的焦点弦问题
例2 已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.若直线l的倾斜角为60°,求|AB|的值.
考点 抛物线的焦点弦问题
题点 求抛物线的焦点弦长
解 因为直线l的倾斜角为60°,
所以其斜率k=tan 60°=.
又F,
所以直线l的方程为y=.
联立
消去y,得x2-5x+=0.