2019-2020学年北师大版选修1-1 导数的应用问题 教案
2019-2020学年北师大版选修1-1     导数的应用问题  教案第1页

2019-2020学年北师大版选修1-1 导数的应用问题 教案

重难点归纳

  1 f(x)在某个区间内可导,若f′(x)>0,则f(x)是增函数;若f′(x)<0,则f(x)是减函数 2 求函数的极值点应先求导,然后令y′=0得出全部导数为0的点,(导数为0的点不一定都是极值点,例如 y=x3,当x=0时,导数是0,但非极值点),导数为0的点是否是极值点,取决于这个点左、右两边的增减性,即两边的y′的符号,若改变符号,则该点为极值点;若不改变符号,则非极值点,一个函数的极值点不一定在导数为0的点处取得,但可得函数的极值点一定导数为0

  3 可导函数的最值可通过(a,b)内的极值和端点的函数值比较求得,但不可导函数的极值有时可能在函数不可导的点处取得,因此,一般的连续函数还必须和导数不存在的点的函数值进行比较,如y=|x|,在x=0处不可导,但它是最小值点

典型题例示范讲解

  例1已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1

  (1)试求常数a、b、c的值;

  (2)试判断x=±1是函数的极小值还是极大值,并说明理由

  命题意图 利用一阶导数求函数的极大值和极小值的方法是导数在研究函数性质方面的继续深入 是导数应用的关键知识点,通过对函数极值的判定,可使学生加深对函数单调性与其导数关系的理解

  知识依托 解题的成功要靠正确思路的选择 本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化 这是解答本题的闪光点

  错解分析 本题难点是在求导之后,不会应用f′(±1)=0的隐含条件,因而造成了解决问题的最大思维障碍

  技巧与方法 考查函数f(x)是实数域上的可导函数,可先求导确定可能的极值,再通过极值点与导数的关系,建立由极值点x=±1所确定的相等关系式,运用待定系数法求值

  解 (1)f′(x)=3ax2+2bx+c

  ∵x=±1是函数f(x)的极值点,

  ∴x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根

  由根与系数的关系,得

  又f(1)=-1,∴a+b+c=-1, ③ 由①②③解得a=,

  (2)f(x)=x3-x, ∴f′(x)=x2-=(x-1)(x+1)

  当x<-1或x>1时,f′(x)>0

  当-1<x<1时,f′(x)<0

  ∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数

  ∴当x=-1时,函数取得极大值f(-1)=1,

  当x=1时,函数取得极小值f(1)=-1

例2在甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边