4.函数的单调性、极值与导数
(1)函数的单调性与导数
如果在(a,b)内,f′(x)>0,则f(x)在此区间内单调递增;f′(x)<0,则f(x)在此区间内单调递减.
(2)函数的极值与导数
已知函数y=f(x)及其定义域内一点x0,对于存在一个包含x0的开区间内的所有点x,如果都有f(x)
极大值与极小值统称为极值.极大值点与极小值点统称为极值点.
5.求函数y=f(x)在[a,b]上的最大值与最小值的步骤
(1)求f(x)在开区间(a,b)内所有极值点.
(2)计算函数f(x)在极值点和端点的函数值,其中最大的一个为最大值,最小的一个为最小值.
类型一 导数几何意义的应用
例1 已知函数f(x)=x-aln x(a∈R).
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
考点 切线方程的求解及应用
题点 求在某点的切线方程
解 函数f(x)的定义域为(0,+∞),f′(x)=1-.
(1)当a=2时,f(x)=x-2ln x,f′(x)=1-(x>0),
∴f(1)=1,f′(1)=-1,
∴y=f(x)在点A(1,f(1))处的切线方程为
y-1=-(x-1), 即x+y-2=0.
(2)由f′(x)=1-=,x>0.
①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;