2.3 充要条件
课时目标
1.结合实例,理解充要条件的意义.2.会判断(证明)某些命题的条件关系.3.会利用充要条件求一些字母的范围,进一步理解数学概念.
1.如果既有p⇒q,又有q⇒p,就记作__________.这时p是q的____________条件,简称________条件,实际上p与q互为________条件.如果pq且qp,则p是q的____________________条件.
2.我们常用"当且仅当"表达充要条件.命题p和命题q互为充要条件,称它们是两个相互等价的命题.
一、选择题
1."x>0"是"x≠0"的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.设集合M={x|0 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 3."m<"是"一元二次方程x2+x+m=0有实数解"的( ) A.充分非必要条件 B.充分必要条件 C.必要非充分条件 D.非充分非必要条件 4."k=1"是"直线x-y+k=0与圆x2+y2=1相交"的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.设l,m,n均为直线,其中m,n在平面α内,"l⊥α"是"l⊥m且l⊥n"的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 6."a<0"是"方程ax2+2x+1=0至少有一个负数根"的( ) A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分也不必要条件 题 号
1
2
3
4
5
6
答 案
二、填空题 7.用符号"⇒"或""填空. (1)a>b________ac2>bc2;(2)a2c≠0________c≠0. 8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2 9.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.(填序号) 三、解答题 10.下列命题中,判断条件p是条件q的什么条件: (1)p:|x|=|y|,q:x=y. (2)p:△ABC是直角三角形,q:△ABC是等腰三角形; (3)p:四边形的对角线互相平分,q:四边形是矩形.