不论是圆的标准方程还是一般方程,都有三个字母(a,b,r或D,E,F)的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a,b,r(或D,E,F)的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程.
2.几何法在圆中的应用
在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.
[针对训练]
1.(2019·湖北名校摸底)过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是( )
A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4
C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4
解析:选C 由题知直线AB的垂直平分线为y=x,直线y=x与x+y-2=0的交点是(1,1),所以圆的圆心为(1,1),所以圆的半径为2,故圆的方程是(x-1)2+(y-1)2=4.
2.(2019·黑龙江伊春三校联考)已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )
A.(x+2)2+(y-1)2=1 B.(x-2)2+(y+2)2=1
C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=1
解析:选B 圆C1:(x+1)2+(y-1)2=1,圆心C1为(-1,1),半径为1.易知点C1(-1,1)关于直线x-y-1=0对称的点为C2,设C2(a,b),则得所以C2(2,-2),所以圆C2的圆心为C2(2,-2),半径为1,所以圆C2的方程为(x-2)2+(y+2)2=1.故选B.
直线与圆位置关系的判断
1.(2019·西安模拟)直线(a+1)x+(a-1)y+2a=0(a∈R)与圆x2+y2-2x+2y-7=0的位置关系是( )