由例3得与之间的关系:
由的定义可知,当n=1时,=;当n≥2时,=-,
即=.
Ⅲ.课堂练习
课本P45练习1、2、3、4
1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式。
2.差数列{}中, =-15, 公差d=3, 求数列{}的前n项和的最小值。
Ⅳ.课时小结
1.前n项和为,其中p、q、r为常数,且,一定是等差数列,该数列的
首项是
公差是d=2p
通项公式是
2.差数列前项和的最值问题有两种方法:
(1)当>0,d<0,前n项和有最大值可由≥0,且≤0,求得n的值。
当<0,d>0,前n项和有最小值可由≤0,且≥0,求得n的值。
(2)由利用二次函数配方法求得最值时n的值
1.等差数列的前项和公式1:
2.等差数列的前项和公式2:
3.对等差数列前项和的最值问题有两种方法:
(1) 利用:
当>0,d<0,前n项和有最大值可由≥0,且≤0,求得n的值
当<0,d>0,前n项和有最小值可由≤0,且≥0,求得n的值