(2)为使小球仅与弹性挡板碰撞一次,且小球不会脱离CDO轨道,问H的取值范围.
答案 (1)84 N (2)0.65 m≤H≤0.7 m
解析 (1)设小球第一次到达D点的速度为vD,对小球从静止到D点的过程,根据动能定理有:
mg(H+r)-μmgL=mv
在D点轨道对小球的支持力N提供向心力,则有N=m
联立解得:N=84 N,由牛顿第三定律得,小球对轨道的压力大小为:N′=N=84 N;
(2)为使小球仅与挡板碰撞一次,且小球不会脱离CDO轨道,H最小时必须满足能上升到O点,
则有:mgHmin-μmgL=mv
在O点由牛顿第二定律有:mg=m
代入数据解得:Hmin=0.65 m
仅与弹性挡板碰撞一次,且小球不会脱离CDO轨道,H最大时,与挡板碰后再返回最高能上升到D点,则mg(Hmax+r)-3μmgL=0
代入数据解得:Hmax=0.7 m
故有:0.65 m≤H≤0.7 m.
变式1 (2018·河南省周口市期末)如图2所示,半径R=0.3 m的竖直圆槽型光滑轨道与水平轨道AC相切于B点,水平轨道的C点固定有竖直挡板,轨道上的A点静置有一质量m=1 kg的小物块(可视为质点).现给小物块施加一大小为F=6.0 N、方向水平向右的恒定拉力,使小物块沿水平轨道AC向右运动,当运动到AB之间的D点(图中未画出)时撤去拉力,小物块继续滑行到B点后进人竖直圆槽轨道做圆周运动,当物块运动到最高点时,由压力传感器测出小物块对轨道最高点的压力为 N.已知水平轨道AC长为2 m,B为AC的中点,小物块与AB段间的动摩擦因数μ1=0.45,重力加速度g=10 m/s2.求:
图2
(1)小物块运动到B点时的速度大小;