九年级数学上册《第24章:圆》教案教学设计免费下载22
九年级数学上册《第24章:圆》教案教学设计免费下载22第2页



  这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.

下面,我们接下去研究确定圆的条件:

(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.

(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?

(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?

(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?

老师在黑板上演示:

  (1)无数多个圆,如图1所示.

(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.

  其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.

  

   (1) (2) (3)

(3)作法:①连接AB、BC;

②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;

  ③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示.

在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.

即:不在同一直线上的三个点确定一个圆.

也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.

外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.

下面我们来证明:经过同一条直线上的三个点不能作出一个圆.

证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,即点P为L1与L2点,而L1⊥L,L2⊥L,这与我们以前所学的"过一点有且只有一条直线与已知