组无解时,两圆有相离和内含两种可能情况.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打"√"或"×")
(1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )
(3)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.( √ )
(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.( √ )
(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ )
题组二 教材改编
2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )
A.[-3,-1] B.[-1,3]
C.[-3,1] D.(-∞,-3]∪[1,+∞)
答案 C
解析 由题意可得,圆的圆心为(a,0),半径为,
∴≤,即|a+1|≤2,解得-3≤a≤1.
3.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )
A.内切 B.相交
C.外切 D.相离
答案 B
解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d==.∵3-2 4.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________. 答案 2 解析 由 得两圆公共弦所在直线为x-y+2=0. 又圆x2+y2=4的圆心到直线x-y+2=0的距离为=.由勾股定理得弦长的一半为=,所以所求弦长为2. 题组三 易错自纠