A.力对物体做了多少功,物体就具有多少能
B.物体具有多少能,就一定能做多少功
C.物体做了多少功,就有多少能量消失
D.能量从一种形式转化为另一种形式时,可以用功来量度能量转化的多少
答案 D
解析 功是能量转化的量度,物体做了多少功,就有多少能量发生了转化;并非力对物体做了多少功,物体就具有多少能;也并非物体具有多少能,就一定能做多少功,所以A、B错误。做功的过程是能量转化的过程,能量在转化过程中总量守恒,并不消失,所以C错误,D正确。
2. 质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图所示。已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为( )
A.mv-μmg(s+x) B.mv-μmgx
C.μmgs D.μmg(s+x)
答案 A
解析 物体克服弹簧弹力做功,弹性势能增加,克服弹力做多少功就转化成多少弹性势能,由能量守恒得Ep+μmg(s+x)=mv,所以Ep=mv-μmg(s+x),故A正确。
考点细研 悟法培优
考点1 功能关系的理解和应用
1.对功能关系的进一步理解
(1)做功的过程就是能量转化的过程。不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对