2、学生完成教材中探究活动的操作。
八、教学过程
(一)明确目标
(二)重点、难点的教学与目标完成过程
第1课时
播放细菌分裂的录像或演示细菌分裂的计算机模拟动画。
提示:在自然界中细菌无处不在,有些细菌的大量繁殖会导致疾病。假如现有一种细菌,在适宜的温度、湿度等环境下,每20min左右通过分裂繁殖一代。
引导学生思考:
1、细菌的生殖方式是怎样的?
2、72h后,由一个细菌分裂产生的后代数量是多少?
3、n代细菌数量是多少?
提出问题,组织讨论:
1、对细菌种群数量增长而言,在什么情况下2n公式成立?
2、这个公式揭示了细菌种群数量增长的什么规律?
3、在学过的生物学内容中,还有哪些生物学问题可以用数学语言来表示。
提示:数学工具在生物学研究中的作用越来越突出。
请学生算出一个细菌产生的后代在不同时间的数量,并填写教材中的表格,然后画出细菌的种群数量增长曲线。
提示:这是在理想条件下对细菌种群数量的推测。
引导学生讨论,同数学公式相比,曲线图表示的模型有什么局限性?
小结:在描述、解释和预测种群数量的变化时,常常需要建立数学模型。数学模型的表现形式可以为公式、图表等。
提出问题,组织讨论:如何建立"培养液中酵母菌种群数量的数学模型",我们应该怎么做?
提出问题,组织讨论:以上讨论的是在实验条件下种群的数量变化,在自然界中种群的数量变化情况如何?
澳大利亚野兔成灾。估计在这片国土上生长着6亿只野兔,它们与牛羊争牧草,啃树皮