=++-4×××=1;
②cosA+cosB+cosC-4sinsinsin=cos60°+cos90°+cos30°-4sin30°sin45°sin15°
=+0+-4×××=1;
③cosA+cosB+cosC-4sinsinsin=cos120°+cos30°+cos30°-4sin60°sin15°sin15°
=-++-4×sin215°
=-+-×(1-cos30°)=1.
(2)在(1)①中A+B+C=180°,有cosA+cosB+cosC-4sinsinsin=1;
在(1)②中A+B+C=180°,有cosA+cosB+cosC-4sinsinsin=1;
在(1)③中A+B+C=180°,有cosA+cosB+cosC-4sinsinsin=1.
猜想:当A+B+C=180°时,有cosA+cosB+cosC=1+4sinsinsin.
证明:当A+B+C=180°时,有A+B=180°-C,即=90°-,
∴cosA+cosB+cosC=2coscos+1-2sin2
=2cos(90°-)cos+1-2sin2
=2sincos-2sin2+1
=2sin(cos-sin)+1
=2sin(cos-cos)+1
=2sin(-2)sinsin(-)+1
=4sinsinsin+1.
∴cosA+cosB+cosC=1+4sinsinsin.
(3)∵10°+99.8°+70.2°=180°,
∴cos10°+cos99.8°+cos70.2°-4sin5°sin49.9°sin35.1°=1.
∴-2cos10°-2cos99.8°-2cos70.2°+8sin5°sin49.9°sin35.1°=-2.