在赤道上,而位于赤道偏北。)
5、不同海区海水温度随水深的变化规律
海洋在垂直方向上,由于太阳辐射首先到达海水表面,海水导热率又很低,海水的温度随深度增加而递减,只是在表层海水以下,海水温度随水深变化不大,特别是1000米以下的水温变化很小,经常保持着低温状态。
6、海洋表层盐度的分布规律
盐度按纬度呈"马鞍形"分布的规律,即赤道附近低,南北回归线附近最高,中纬度海区又随纬度的增高而降低,到高纬度海区最低。概括地说,亦即从南北半球的副热带海区分别向两侧的高纬度和低纬度递减。
7、海气的相互作用及其对全球水、热平衡的影响
海-气间的水分交换过程:海洋通过蒸发作用,向大气提供水汽。大气中约86%的水汽是由海洋提供的,因此,海洋是大气中水汽的最主要来源。大气中的水汽在适当条件下凝结,并以降水的形式返回海洋,从而实现与海洋的水份交换。海洋的蒸发量与海水温度密切相关,一般来说,海水温度越高,蒸发量越大。因此,低纬度海区和有暖流流经的海区,海面蒸发旺盛,空气湿度大,降水也较丰富,海-所间的水分交换也较为活跃。
海-气间的热量交换过程:海洋吸收了到达地表太阳辐射的大部分,并把其中85%的热量储存在海洋表层。海洋再通过潜热、长波辐射等方式储存的太阳辐射能输送给大气。可以说,海洋是大气最主要的热量储存库。海洋向大气输送的热量受海洋表面水温的影响,水温高的海区,向大气输送的热量多。
与陆地相比,海洋增温慢,冷却也慢,从而调节着大气温度的变化。一方面,海洋的气温变化有滞后效应。例如,海洋对太阳辐射季节变化的影响要比陆地晚一个月左右。另一方面,海洋使大气的温度变化比较和缓。海洋影响较大的地区,气温的日较差和年较差都较小。生活在沿海地区的人们,可以明显地感受到海洋对大气温度的调节作用。
海-气通过长期的相互作用,并在地转偏向力的作用下,形成了运动方向基本一致的大气环流和大洋环流。大气环流和大洋环流驱使着水分和热量在不同地区的传输,从而维持地球上水分和热量的平衡。
8、厄尔泥诺、拉尼娜现象及其对全球气候的影响
南美西海岸(秘鲁和厄瓜多尔附近)延伸至赤道太平洋向西至日界线附近的海面温度异常增暖的现象。
厄尔尼诺的发生机制正好相反,当赤道太平洋信风持续加强时,赤道东太平洋表面暖水被吹走,深层的冷水上翻作为补充,海表温度进一步变冷,从而形成拉尼娜。拉尼娜常与厄尔尼诺交替出现,但其发生频率要低于厄尔尼诺。例如,80年代以来仅发生了3次拉尼娜,是厄尔尼诺发生频率的一半。
厄尔尼诺对气候的影响,以环赤道太平洋地区最为显著。在厄尔尼诺年,印度尼西亚、澳大利亚、南亚次大陆和巴西东北部均出现干旱,而从赤道中太平洋岛南美西岸则多雨。许多观测事实还表明,厄尔尼诺事件通过海气作用的遥相关,还对相当远的地区,甚至对北半球中高纬度的环流变化也有一定影响。
厄尔尼诺和拉尼娜是赤道中、东太平洋海温冷暖交替变化的异常表现,这种海温的冷暖变化过程构成一种循环,在厄尔尼诺之后接着发生拉尼娜并非稀罕之事。同样拉尼娜后也会接着发生厄尔尼诺。但从1950年以来的记录来看,厄尔尼诺发生频率要高于拉尼娜。