当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,从物理意义上看,即使汽车在时间段上的速度变化很小,不妨认为它近似地以时刻处的速度作匀速直线运动,即在局部小范围内"以匀速代变速",于是的用小矩形的面积近似的代替,即在局部范围内"以直代取",则有
①
(3)求和
由①,
==
==
从而得到的近似值
(4)取极限
当趋向于无穷大时,即趋向于0时,趋向于,从而有
Z
思考:结合求曲边梯形面积的过程,你认为汽车行驶的路程与由直线和曲线所围成的曲边梯形的面积有什么关系?
结合上述求解过程可知,汽车行驶的路程在数据上等于由直线和曲