,再加上得到第3个个体编号,这样继续下去,直到获取整个样本。
说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。
例1、某校高中三年级的295名学生已经编号为1,2,......,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.
分析:按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号.
解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,59组是编号为291~295的5名学生.采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,......,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,......,288,293.
例2、从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )
A.5,10,15,20,25 B.3,13,23,33,43
C.1,2,3,4,5 D.2,4,6,16,32
分析:用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B.
变式:采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,......,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为
(A)7 (B) 9 (C) 10 (D)15
解:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即,第k组的号码为,令,而,解得,则满足的整数k有10个,故答案应选C。
二、课堂练习:
1、某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是 抽样方法。
2、某单位的在岗工作为624人,为了调查工作上班时,从家到单位的路上平均所用的时间,决定抽取10%的工作调查这一情况,如何采用系统抽样的方法完成这一抽样?
反思总结:
1、 本节课你学到了哪些知识点?
2、 本节课你学到了哪些思想方法?
3、 本节课有哪些注意事项?
课外作业:
补充:
1、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为( )
A.99 B、99.5 C.100 D、100.5