求函数的最值 角度1 不含参数的函数最值
求下列各函数的最值.
(1)f(x)=3x3-9x+5,x∈[-2,2];
(2)f(x)=sin 2x-x,x∈.
[解] (1)f′(x)=9x2-9=9(x+1)(x-1),
令f′(x)=0得x=-1或x=1.
当x变化时,f′(x),f(x)变化状态如下表:
x -2 (-2,-1) -1 (-1,1) 1 (1,2) 2 f′(x) / + 0 - 0 + / f(x) -1 11 -1 11 从表中可以看出,当x=-2时或x=1时,函数f(x)取得最小值-1.
当x=-1或x=2时,函数f(x)取得最大值11.
(2)f′(x)=2cos 2x-1,令f′(x)=0,得cos 2x=,
又∵x∈,∴2x∈[-π,π].
∴2x=±.∴x=±.
∴函数f(x)在上的两个极值分别为
f=-,f=-+.
又f=-,f=.
比较以上函数值可得f(x)max=,f(x)min=-.
角度2 含参数的函数最值
a为常数,求函数f(x)=-x3+3ax(0≤x≤1)的最大值.