2018-2019学年人教A版必修二 2.1.1 平面 教案
2018-2019学年人教A版必修二 2.1.1 平面 教案第2页

等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.

推进新课

新知探究

提出问题

①怎样理解平面这一最基本的几何概念;

②平面的画法与表示方法;

③如何描述点与直线、平面的位置关系?

④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?

⑤根据自己的生活经验,几个点能确定一个平面?

⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;

⑦描述点、直线、平面的位置关系常用几种语言?

⑧自己总结三个公理的有关内容.

活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:

①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.

②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.

③点在直线上和点在直线外;点在平面内和点在平面外.

④确定一条直线需要几个点?

⑤引导学生观察教室的门由几个点确定.

⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.

⑦文字语言、图形语言、符号语言.

⑧平面的基本性质小结.

讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).

②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于