①当a<0时,由图①可知,
f(x)min=f(0)=-1,
f(x)max=f(2)=3-4a.
②当0≤a<1时,由图②可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(2)=3-4a.
③当1≤a≤2时,由图③可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(0)=-1.
④当a>2时,由图④可知,
f(x)min=f(2)=3-4a,
f(x)max=f(0)=-1.
综上所述,当a<0时,f(x)min=-1,f(x)max=3-4a;
当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;
当1≤a≤2时,f(x)min=-1-a2,f(x)max=-1;
当a>2时,f(x)min=3-4a,f(x)max=-1.
三、方法提升
1、 函数的单调性只能在函数的定义域内讨论,函数在给定的区间的单调性反映函数在区间上函数值的变化趋势,是函数在区间上的整体性质 ,但不一定是函数在定义域内上的整体性质,函数的单调性是针对某个区间而言的,所以受到区间的限制;
2、 求函数的单调区间,首先请注意函数的定义域,函数的增减区间都是定义域的子区间;其次,掌握基本初等函数的单调区间,常用的方法有:定义法,图象法,导数法;
3、 利用函数的单调性可以解函数不等式、方程及函数的最值问题。
四、反思感悟
。
五、课时作业
一、选择题
1. 【15高考改编】函数的定义域为( )
A. B C. D.