九年级数学上册《第25章:概率初步》教案教学设计免费下载11
九年级数学上册《第25章:概率初步》教案教学设计免费下载11第2页

(1)理论计算又分为如下两种情况:

第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.

(2)实验估算又分为如下两种情况:

第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.

第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.

3.概率的意义

(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.

(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.

(3)概率取值范围:0≤p≤1.

(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.

(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.

(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.

25.2 用列举法求概率

1.概率的公式

(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.

(2)P(必然事件)=1.

(3)P(不可能事件)=0.

2. 几何概型的概率问题

是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件"向区域G中任意投掷一个点M,