课题:2.1.2指数函数及其性质2
一、学习目标:
1.熟练掌握指数函数概念、图象、性质;
2.能求由指数函数复合而成的函数定义域、值域;
3.掌握比较同底数幂大小的方法;
4. 培养学生数学应用意识。
二、学法指导:自主学习
三、教学过程:
(一)复习:的图象和性质
a>1 0 图 象 性 质 (1)定义域:R (2)值域:(0,+∞) (3)过点(0,1),即x=0时,y=1 (4)在 R上是增函数 (4)在R上是减函数 (二)新课讲解: 求下列函数的定义域、值域: ⑴ ⑵ ⑶ 分析:此题要利用指数函数的定义域、值域,并结合指数函数的图象注意向学生指出函数的定义域就是使函数表达式有意义的自变量x的取值范围 解(1)由x-1≠0得x≠1 所以,所求函数定义域为{x|x≠1} 由 ,得y≠1 所以,所求函数值域为{y|y>0且y≠1} 说明:对于值域的求解,在向学生解释时,可以令,考察指数函数y=,并结合图象直观地得到,以下两题可作类似处理 (2)由5x-1≥0得 所以,所求函数定义域为{x|} 由 ≥0得y≥1 所以,所求函数值域为{y|y≥1}(3)所求函数定义域为R
图
象
性
质 (1)定义域:R (2)值域:(0,+∞) (3)过点(0,1),即x=0时,y=1 (4)在 R上是增函数 (4)在R上是减函数 (二)新课讲解:
求下列函数的定义域、值域:
⑴ ⑵ ⑶
分析:此题要利用指数函数的定义域、值域,并结合指数函数的图象注意向学生指出函数的定义域就是使函数表达式有意义的自变量x的取值范围
解(1)由x-1≠0得x≠1
所以,所求函数定义域为{x|x≠1}
由 ,得y≠1
所以,所求函数值域为{y|y>0且y≠1}
说明:对于值域的求解,在向学生解释时,可以令,考察指数函数y=,并结合图象直观地得到,以下两题可作类似处理
(2)由5x-1≥0得
所以,所求函数定义域为{x|}
由 ≥0得y≥1
所以,所求函数值域为{y|y≥1}
(3)所求函数定义域为R