银面等高,可知初始状态其压强为p0.当右管水银面高出左管10 cm时,左管水银面下降5 cm,气柱长度增加5 cm,此时气柱体积可记为V2=(l1+5 cm)S,右管低压舱内的压强记为p,则左管气柱压强p2=p+10 cmHg,
根据玻意耳定律得:p0V1=p2V2
即p0l1S=(p+10 cmHg)(l1+5 cm)S
代入数据,解得:p=50 cmHg.
[答案] 50 cmHg
命题视角2 充气问题
如图所示为某压缩式喷雾器储液桶,其容量是5.7×10-3m3,往桶内倒入4.2×10-3 m3的药液后开始打气,假设打气过程中药液不会向外喷出.如果每次能打进2.5×10-4 m3的空气,要使喷雾器内空气的压强达到4 atm,应打气几次?这个压强能否使喷雾器内的药液全部喷完?(设标准大气压为1 atm,打气过程中不考虑温度的变化)
[思路点拨]本题是一道变质量问题,我们可以灵活选取研究对象把变质量问题转化为等质量问题.
[解析] 设标准大气压为p0,药桶中空气的体积为V,打气N次后,喷雾器中的空气压强达到4 atm,打入气体在1 atm下的体积为N×2.5×10-4 m3.选取打气N次后药桶中的空气为研究对象,由玻意耳定律得
p0V+p0×N×(2.5×10-4 m3)=4p0V
其中V=5.7×10-3 m3-4.2×10-3 m3=1.5×10-3 m3
代入上式后解得N=18当空气完全充满药桶后,如果空气压强仍然大于大气压,则药液可以全部喷出,否则不能完全喷出.
由玻意耳定律得4p0V=p×5.7×10-3 m3
解得p=1.053p0>p0,所以药液可以全部喷出.
[答案] 18 能
(1)研究对象的选取方法:如果打气时每一次打入的空气质量、体积和压强均相同,则可设想用一容积为nV0的打气筒将压强为p0的空气一次打入容器与打n次气等效代替.研究