等轴双曲线
观察所给两个双曲线方程.
(1)-=1;
(2)x2-y2=9.
问题1:两个双曲线方程有何共同特点?
提示:所给的两个双曲线方程的实轴长和虚轴长相等.
问题2:两个双曲线的离心率是多少?
提示:.
问题3:两双曲线的渐近线方程是什么?
提示:渐近线方程y=±x.
实轴长和虚轴长相等的双曲线叫做等轴双曲线.
1.离心率e反映了双曲线开口的大小,e越大,双曲线的开口就越大.
2.双曲线有两条渐近线,渐近线与双曲线没有交点.渐近线方程用a,b表示时,受焦点所在坐标轴的影响.
双曲线的几何性质
[例1] 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.
[思路点拨] 先化方程为标准形式,然后根据标准方程求出基本量a,b,c即可得解,但要注意焦点在哪条坐标轴上.
[精解详析] 由9y2-4x2=-36得
-=1,
∴a2=9,b2=4.
c2=a2+b2=13.