P4-Q4=4x3+x4=x3(4+x)<0,所以P4 假设Pk 则Pk+1=(1+x)Pk<(1+x)Qk=Qk+xQk =1+kx++x+kx2+ =1+(k+1)x+x2+x3 =Qk+1+x3 即当n=k+1时,不等式成立. 所以当n≥3,且x∈(-1,0)时,Pn 归纳-猜想-证明
[例2] 设f(n)>0(n∈N+),对任意自然数n1和n2总有f(n1+n2)=f(n1)f(n2),又f(2)=4. (1)求f(1),f(3)的值. (2)猜想f(n)的表达式,并证明你的猜想. [思路点拨] 利用f(n1+n2)=f(n1)f(n2)可求出f(1),f(3)再猜想f(n),利用数学归纳法给出证明. [解] (1)由于对任意自然数n1和n2, 总有f(n1+n2)=f(n1)·f(n2). 取n1=n2=1,得f(2)=f(1)·f(1),即f2(1)=4. ∵f(n)>0(n∈N+), ∴f(1)=2. 取n1=1,n2=2,得f(3)=23. (2)由f(1)=21,f(2)=4=22,f(3)=23, 猜想f(n)=2n.