(2)类比推理的步骤与方法
第一步:弄清两类对象之间的类比关系及类比关系之间的(细微)差别.
第二步:把两个系统之间的某一种一致性(相似性)确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚.
3.二维空间中圆的一维侧度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.则四维空间中"超球"的三维测度V=8πr3,猜想其四维测度W= .
解析:(2πr4)′=8πr3.
答案:2πr4
4.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN,如果用S1,S2,S3表示三个侧面的面积,S4表示截面的面积,那么你类比得到的结论是 .
解析:由于平面图形中的边长应与空间几何体中的面积类比,因此所得到的结论为:S=S+S+S.
答案:S=S+S+S
演绎推理的应用 [例3] 已知{an}为等差数列,首项a1>1,公差d>0,n>1且n∈N .
求证:lg an+1lg an-1<(lg an)2.
[思路点拨] 对数之积不能直接运算,可由基本不等式转化为对数之和进行运算.
[精解详析] ∵{an}为等差数列,
∴an+1+an-1=2an.
∵d>0,
∴an-1an+1=(an-d)(an+d)=a-d2