∴x2>0,∴-<0. ∴,
∴f(x)= 在(0,+∞)上是减函数.
点评:比较一下两种方法,用求导证明是不是更简捷一些.如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性.
例4确定函数的单调减区间
例5已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′
=1-1·x-2=
令>0. 解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1).
四、课堂练习:
1.确定下列函数的单调区间
(1)y=x3-9x2+24x (2)y=x-x3
(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)
令3(x-2)(x-4)>0,解得x>4或x<2.
∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2)
令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的单调减区间是(2,4)
(2)解:y′=(x-x3)′=1-3x2=-3(x2-)=-3(x+)(x-)