2018-2019学年苏教版必修三 疑难规律方法:第三章 概 率 学案
2018-2019学年苏教版必修三  疑难规律方法:第三章 概 率      学案第2页

二、求解"至少"与"至多"型问题

例2 甲、乙、丙、丁四人同时参加一等级考试,已知恰有1人过关(事件A)的概率为0.198,恰有2人过关(事件B)的概率为0.380,恰有3人过关(事件C)的概率为0.302,4人都过关(事件D)的概率为0.084.求:

(1)至少有2人过关的概率P1;

(2)至多有3人过关的概率P2.

分析 "至少有2人过关"即事件B+C+D,"至多有3人过关"即事件A、B、C与事件"4人均未过关"的和事件,其对立事件为D.(注意"4人均未过关"这种可能情况)

解 由条件知,事件A、B、C、D彼此互斥.

(1)P1=P(B+C+D)=P(B)+P(C)+P(D)=0.766.

(2)P2=P()=1-P(D)=1-0.084=0.916.

点评 处理"至多"、"至少"型问题,既可以分情况讨论,也可以从反面考虑,即借助对立事件的概率间接求解.当事件包含的情况较多时,常利用P(A)=1-P()求P(A).

三、列方程求解概率问题

例3 某班级同学的血型分别为A型、B型、AB型、O型,从中任取一名同学,其血型为AB型的概率为0.09,为A型或O型的概率为0.61,为B型或O型的概率为0.60,试求任取一人,血型为A型、B型、O型的概率各是多少?

分析 设出所求事件的概率,将题中涉及到的事件用所求事件表示出来,借助这些事件的概率及公式,列方程求解即可.

解 记"任取一人,血型为A型"、"任取一人,血型为B型"、"任取一人,血型为AB型"、"任取一人,血型为O型"分别为事件E,F,G,H,显然事件E、F、G、H两两互斥.

解得

所以任取一人,血型为A型、B型、O型的概率分别为0.31、0.30、0.30.