点,且AP⊥BC于P.
求证:E,D,P,F四点共圆.
[思路点拨] 可先连接PF,构造四边形EDPF的外角∠FPC,证明∠FPC=∠C,再证明∠FPC=∠FED即可.
[证明] 如图,连接PF,
∵AP⊥BC,F为AC的中点,
∴PF=AC.
∵FC=AC,
∴PF=FC.
∴∠FPC=∠C.
∵E、F、D分别为AB,AC,BC的中点.
∴EF∥CD,ED∥FC.
∴四边形EDCF为平行四边形,
∴∠FED=∠C.
∴∠FPC=∠FED.
∴E,D,P,F四点共圆.
证明四点共圆的方法常有:①如果四点与一定点等距离,那么这四点共圆;②如果四边形的一组对角互补,那么这个四边形的四个顶点共圆;③如果四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆;④如果两个三角形有公共边,公共边所对的角相等且在公共边的同侧,那么这两个三角形的四个顶点共圆.
3.判断下列各命题是否正确.
(1)任意三角形都有一个外接圆,但可能不只一个;
(2)矩形有唯一的外接圆;
(3)菱形有外接圆;
(4)正多边形有外接圆.
解:(1)错误,任意三角形有唯一的外接圆;(2)正确,因为矩形对角线的交点到各顶点的距离相等;(3)错误,只有当菱形是正方形时才有外接圆;(4)正确,因为正多边形的中心到各顶点的距离相等.
4.已知:在△ABC中,AD=DB,DF⊥AB交AC于点F,AE=EC,EG⊥AC交AB于点G.求证: