2018-2019学年人教A版必修1 2.1.2指数函数及其性质 教案(3)
2018-2019学年人教A版必修1 2.1.2指数函数及其性质 教案(3)第1页

2.1.2 指数函数及其性质(三)

(一)教学目标

1.知识与技能:

(1)熟练掌握指数函数概念、图象、性质;

(2)掌握指数形式的函数定义域、值域的求法,以及单调性、奇偶性判断;

(3)培养学生数学应用意识

2.过程与方法:

(1)让学生了解数学来自生活,数学又服务于生活的哲理;

(2)培养学生观察问题,分析问题的能力.

3.情感、态度与价值观

(1) 认识从特殊到一般的研究方法.

(2) 了解数学在生产实际中的应用.

(二)教学重点、难点

1.教学重点:指数形式的函数图象、性质的应用.

2.教学难点:判断单调性.

(三)教学方法

启发学生运用证明函数单调性的基本步骤对指数形式的复合函数的单调性进行证明,但应在变形这一关键步骤帮助学生总结、归纳有关指数形式的函数变形技巧,以利于下一步判断.

(四)教学过程

教学

环节 教学内容 师生互动 设计意图 复习

引入 回顾

1.指数函数的定义、图象、性质.

2.函数的单调性、奇偶性的定义,及其判定方法.

3. 复合函数单调性的判定方法.

老师提问

学生回答

复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,函数u=g(x)的值域应是函数y=f(u)的定义域的子集.在复合函数y=f[g(x)]中,x是自变量,u是中间变量.当u=g(x)和y=f(u)在给定区间上增减性相同时,复合函数

y=f[g(x)]是增函数;增减性相反时,y=f[g(x)]是减函数.

为学习新课作好了知识上的准备.