排列组合应用题的教学设计
解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。
引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动:
(1)选其中一人为负责人,共有多少种不同的选法。
(2)每组选一名组长,共有多少种不同的选法4
评述:本例指出正确应用两个计数原理。
引例2
(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?
(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?
评述:本例指出排列和组合的区别。
求解排列组合应用题的困难主要有三个因素的影响:
1、 限制条件。2、背景变化。 3、数学认知结构
排列组合应用题可以归结为四种类型:
第一个专题 排队问题
重点解决:
1、如何确定元素和位置的关系
元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为"元素分析法";以位置为主,分析各种可能性,称为"位置分析法"。
例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?
分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案 (种),而有的同学则做出容易错误的答案 (种),而他们又错在哪里呢?应该是错在"元素"与"位置"上了!
法一:元素分析法(以信为主)
第一步:投第一封信,有4种不同的投法;
第二步:接着投第二封信,亦有4种不同的投法;
第三步:最后投第三封信,仍然有4种不同的投法。
因此,投信的方法共有:(种)。
法二:位置分析法(以信箱为主)
第一类:四个信箱中的某一个信箱有3封信,有投信方法 (种);
第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,有投信方法 种 。