证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.
用反证法证明否定性命题 [例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.
[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.
[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.
(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.
(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.
综上所述.原结论成立.
[一点通] (1)结论中含有"不"、"不是"、"不可能"、"不存在"等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.
(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即"否定之否定等于肯定",其中:第一个否定是指"否定结论(假设)";第二个否定是指"逻辑推理结果否定了假设".反证法属"间接解题方法".
1.实数a、b、c不全为0等价于 (填序号).
①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.