2019-2020学年人教B版选修2-1 2.4抛物线的标准方程教案
2019-2020学年人教B版选修2-1  2.4抛物线的标准方程教案第3页



(1) 例题的讲解与引申

例3有2种解法;解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离.可得焦半径公式设P(x0,

这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握.

(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p.特别地:当AB⊥x轴,抛物线的通径|AB|=2p

例4涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.

附 教学教案